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ON THE PRECESSIONAL - SCREW MOTIONS OF A SOLID IMPlERSED IN LIQUID* 

V.N. RUBANOVSKII 

The Kirchhoff-Klebsch problem on the inertial motion of a solid immersed 
in a liquid is considered. The precessional-screw motions of the solid 
consisting of two screw motions are investigated. The axis of one motion 
is fixed in space, and the other axis is fixed within the body. The 
necessary and sufficient kinematic conditions are given for the precessional- 
screw motions in differential and finite form. A method of finding such 
motions is given, their stability is studied and a geometrical interpreta- 
tion of the body motions is presented. 

1. Consider the problem of the inertial motion of a free solid bounded by a singly 
connected surface and containing multiconnected cavities completely filled with a perfect 
fluid in irrotational motion, in a perfect, homogeneous incompressible fluid unbounded in 
all directions. We will assume that the motion of the fluid outside the body caused by its 
motion is irrotational, and that the fluid is at rest at infinity. 

The kinetic energy T of such a dynamic system can be written, apart from a constant 
determined by the periodic motion of the fluid within the body cavities, in the form /l/ 

(aijPiPj + bijR,Rj + 2cijPiRj)v aij =ajiv bi, = bji 

where all, bij, Cij are constants defined for the given system, while RI R,,R, and PI, Pa, P3 
are projections of the impuslive force R and impulsive couple P of the system on the axes 
of a rectangular Oz,z%x, coordinate system rigidly bound to the body, neglecting the cyclic 
motion.of the fluid within the body cavities. 

Denoting by utand 9, the projections of the translational velocity u and instantaneous 
angular velocity P of the body on the xl axes, we obtain for them the foll.owing expressions: 

u1 = aTlaR,, sz, = BTIBP, 023) (1.1) 

The equations of motion of a body in a fluid have the form /l, 2/ 

dR/dt+Px R-0, dP/dt+Rx(Pfk)+ux R-O (1.3) 

where k z (k,, k,, k3) is the kinetic momentum vector of the cyclic motion of the fluid in the 
body cavities. Equations (1.2) admit of three first integrals 

T = E = const, R* = Ha = const, (P + k).R = hHa = coast (1.3) 

Using the methods of..screw calculus /3/ we introduce the impulsive Q = R + w (P + k) 

and kinematic U = 8 + ou screw, where 0 (04 = 0) is the Clifford number, and write (1.2) 

in the form of a single equation 
dQldt + U x Q = 0 (1.G) 

*Prikl.Matem.Mekhan.,48,5,738-744,1984 
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From (1.4) it follows that the screw Qis fixed in space, and 

Q' = HP (I + oh)2 0.5) 

Separating the principal part from the momentum part we obtain the last two integrals of 
(1.3). 

2. We shall call the motion of a body in a fluid the precessional-screw (PS) motion if 
it consists of two screw motions the dual angle between whose axes remains constant and the 
axis of the first and second screw motion is fixed in space and the body respectively. 

Below we shall only consider the case when the component screw motions are constant. 
We shall show the necessary and sufficient kinematic conditions for the PS motion. Let A 

denote the unit screw of the axis fixed in space. We take zg as the axis fixed within the body, 

and denote its unit screw by E,. The dual angle between the axes of 

denoted by 8= d i- &to. The screws A and ES satisfy the equations 

dA/dt+U x A-0, A’si, A.El=As=-cosO 

This yields the following equations in projections on the axes 

A; = U,A,- U,A,, A,'= U,A,- U,A, 

U,A, - U,Ar = 0 

the screw A and E,is 

(2.1) 

51, r,, 2s: 

(2.2) 
(2.3) 

Differentiating the integral relation (2.3) and taking (2.2) into account, we obtain an 
equation. Substituting into this equation the expressions 

obtained from (2.1) and (2.3), we arrive at the required condition 

UzUi - UlU2’ - u, (U1’ + Ut2) + (up +- uzy c tg 8 = 0 (2.4) 

The relation (2.4) represents a screw analogue of the well-known kinematic Grioli con- 
dition of precessional motions of a solid with a fixed paint/4/. 

Let us introduce a rectangular coordinate system o'&&, whose & axis coincides with 
the screw axis Q = H(1 -k oh)r with unit screw r. The position of moving Ozlxgz, axes with 
respect to the fixed O’~l~IEl axes is defined by the Euler angles 8,. Ye,@,. The projections 
Ur of the screw U on the xiaxes are connected with the dual Euler angles and their time deriva- 
tives by the relations /3/ 

U1 = YU; sin 8, sin CJr + C9; co8 @, 

Us = Y&in 8, co8 @* - i3; sin @, 

us = Y; co9 0, + ‘p; 

Substituting these relations into (2.4), we reduce the condition of PS motions to the 
form Y*"@,'sin "* --e8,7**sine, + 2Y,*e,.2c0se, + (2.5) 

y;'" sina 8, cos 8, = (e: + Y,‘* sin* 0,)% ctg 8 
The PS condition of motions can be written in a finite form in terms of the dual Euler 

angles. To do this, we shall consider the scalar product of two screw products 

(A >: lJ.(l':. Es)=(A.r)(I’.El)-A.E, 

Since the scalar products of unit screws are equal to the cosines of the corresponding 
dual angles, the above expression yields sin K sine,, cos (Ye-Y& = cosKcose, - cos 8, where 

Y* - Yy,o is the dual angle between the screws (A x r) sin"K and (I' x E,)sir~‘W,,l,~ is the 

dual angle between the axis of the screw (AX r)sin-‘K and the axis &, and K is the dual 
angle'between the screws A and I' (K =x + 0x0). 

The last equation yields the required condition 

cos (Y,, -Yea) = (cos K cos 8, - cos B)(sin K sin 8,)-l (2.6) 

which can be regarded as a general solution of the differential equation (2.5) with two arbi- 
trarydualconstants Y*o and K. The relation is an analogue of the condition of precessional 
motion of a body with a fixed point* (*Gorr G.V. Methods of constructing complete solutions 
of rigid body dynamics. Doctorate Dissertation, Moscow, MGU, 1982.) 

3. We shall now describe the method of finding the PS motions. Multiplying both sides 
of the (2.1) scalarly by the screw E,, we obtain the relation E,.(U x A)= 0 from which it 
follows that the screw U can be written in the form 

U==I’A+WE, (3.1) 
where Y is the dual angle between the axes of the screws Ax (rx A) and Esx A, and 
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@ is the dual angle between the axis of the screw E, x A and the x,axis. 
Subsituting (3.1) into (2.11, we obtain the following equation for determining A: 

6 + (0’ (E3 x A) = 0, A’ = 1 t3.21 
Integrating (3.2) we find the following expression for the rectangular dual coordinate 

At = Ai + & (i = 1, 2, 3) of the screw A: 

A, = sin 8 sin a, A, = sin9 cos Q, A, = cos 8, Q, = Wt + A (3.3) 
where A = a + wa” is an arbitrary dual constant. 

Expressions (3.1) and (3.3) yield the following expressions for the coordinates Ui of 
the screw U: 

ITT1 = q+ au1 = Y’sin @sin Cp (3.4) 
u, = 8, + 0% = T sin 9 cos @ 

ir,==QS+ou,=W’cos8+@ 

Separating the principal and momentum parts, we obtain 

P 1= $‘sin+aincp, !2,=$‘sin6coscp,51,=*p” cos64-q’ 

T = cp’t + a 

u1 p (9” sin 6 + 9.6” co9 6) sin cp + \p’ (cp” t + a”) sin 6 cos ‘p 

up = (9” sin 6 + *’ Wms6) co9 q7 - $* (cp”t + a”) sin 6 sin cp 

u3 3 $9 co9 6 - $‘9” sin 6 + (9* 

(3.5) 

(3.6) 

To find the screw r we use the easily confirmed expansion 

r=( CO-SK+ 
cos8sinKsin’P n 

sin 8 ) 
- sinKsinY E 

Sill 0 
a- sins;nc; ’ (A x Es) 

from which we obtain 

m 1,=(sin8cosK+cos8sinKsinY)sin~-sinKeosYcoscP 

ra = (sin 9 cos K + cos 8 sin K sin Yu) cos CD + sin K cos Y sin CD 

rJ = cos 0 cos K - sin 8 sin H sin Y, Y = Tt + B 

B = 0 + or = const 

for the coordinates ri = yi + wvq(i = 2,&J) of the screw r. 
Separating again the principal and momentum parts we obtain 

y1 = (sin fi co9 x + co9 6 sin x sin *) sin cp - 

sin w co9 $ co9 cp 

ys = (sin + cos 1c + cos 6 sin x sin $) cos q + 

sin x co9 $ sin ‘p 

y3 = cos 6 cos x - sin 6 sin x sin 9 

VI” = (W cos 6 co9 x - x0 sin 6 sin x) sin ‘p - (6” sin 6 sin X- 
x0 cos 6 co9 x) sin cp sin 9 - x0 co9 x co9 q co8 $ + 

(cp” +Ip”cos*)sinxsincp cosg + cp”sin6cos9tcoscp + 
(g” + ‘pa cos i?) sin x co9 cp sin 9 

yzo = (6” co9 6 co9 x - x”sin 6 sin x) co3 q7 - (6’ sin 6 sin It - 

no co9 6 cos x) cos cp sin 9 + w0 cos x sin cp cos \p + 
(tp” + I#” cos 6) sin x co9 ‘p cos 9 - rp” sin -0 cos x sin rp - 

($” + I$ cos 6) sin x sin cp sin $ 

Y 3o = -(W sin 6 cos x + x0 cos 6 sin x) - (W co9 6 sin x + 
&in 6 cos x) sin $ - *’ sin i? sin x cos Q 

(3.7) 

(3.8) 

(3.9) 

Expressions for Ri, Pi (i = 1, 2,3) axe obtained from the relation 

R + o (P + k) = H (1 + wh)(y + my”) 

by writing it in terms of the coordinates and separating the principal and momentum parts 

RI = Hy,, P, = hR1 + Hyl” - kl (223) (3.10) 

On the other hand, we have the relations (1.1) for B1, ul (i = 1, 2, 3). We write these 
relations in the form (the superscript T denotes transposition) 

Q=A*P+C.R, u=C*PtB*R, A=IIUijJI:* 

B=llbij ll13v C=[cijIf 

Substituting here the expressions for R and P from (3.1Of, we obtain 
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95;;;HA.~'~H(c+hA).1)-A.k (3.11) 

u-Hd.y"+ H(B+h+y-CT.k (3.12) 

Identifying now the expressions for 0 and u given by (3.5), (3.11) and (3.61, (3.12), 
we obtain the condtions fox the PS motions of the body to exist. 

Let us consider relation (3.11).Itsleft-handside containsnosecularterms. The necessary 
condition for its right-hand side also to contain no secular terms is, that Eqs.(3.9) for 
ylo,yop,ysD should contain no secular terms. This leads to the conditions 

9" sin 6 sin x = 0, vwsin6cosx; = 0 

(cp” + $‘“‘cos tt) sin x = 0, (Ip’” + cp’“cos tt) sin x = 0 

which hold for the following cases: 

a) x=(pV= 0; b)6=cp*++--O; c) #'I&, rp'" =$'z; d) ,j,‘“=cp” =o (3.13) 

Let us investigate the PS motions in case a) of (3.13). We shall assume for simplicity 
that x’=O, in which case the axes of the screws A and rwill coincide. 

Identifying the expressions (3.5), (3.111 for s& and (3.6)‘ (3.12) for Ui (i = 1,2, 3), we 
obtain the following nine groups Of conditions for the PS motions to exist: 

la,, @sin6 + 6" cos6) - al,p”sin 6 + cl1 sin 61 R = 
6,1$ sin 6 (123) 

Ia+" sin 6 f aI8 (h sin 6 + 6” cos #) + cl, sin &I H = 
Sly sin Zp (123) 

[a,, (h cos6 - @“sin 6) + C~SCOS 61 H - aIlk -!a12k, - aIlk - 

.V 64)’ -t- Ip’ cos 6) ($23) 
al,cp'oH sin 6 = 0 (123), a&‘H sin 6 = 0 (123) 
Ic,, (h sin 6 + tacos ft) - c,,a*sin 6 + b,, sin @I H = g, (123)' 

Ic,,a’sin 6 -t cl1 (h sin 6 + 6" cos a) + b,, sin 61 H = g,’ (123)' 

[C3* (h cos6 - &in %) f b,,cos 61 H - c,,k, - ctlkS - 
c,,k, = 0 (123)' 

cqlg?H sin 6 = 6,vq*sin 6 (123)‘, c,,q”H sin 6 = 
&,l$' cp* sin 6 (123)' 

& = &' = 9" sin 6 + $W cos 6, g, = -g,’ = -*‘u” sin 8, g, = gs‘ = 0 
Here sji is the Kronecker delta, the symbol (1231 means that anothertwoanalogous rela- 

tions are obtained from the relation shown by cyclic permutation of the indices 1, 2, 3 accOm- 

panYing g,, b5', of the first index of atj, bij, Cfj and of the lower index of &j'; and the prime 

accomPanYing this symbol means that the second index of cij should be interchanged in the manner 
shown. 

In the course of analysing the above conditionsawe can assume that am = I&C,,= c,,,Othsr- 
wise it can be achieved by a oorresponding choice of the 
of these conditions leads to the following relations: 

0x,x$, coordinate system. Analysis 

kl = k, = a 

aI2 = cl2 = c,, = b,, .= 0, cl1 = a,,v, csf = %p, cl3 = 

c,, = aaspx cil = c -I- alp, bti = b + a& (i = 1, 2) 

es3 = c + asSp + c’, b,, = alsvp, b,, = %,pp 
a”=@Q= cp”=O, cp’=c’Hcos(t,~‘=cH,Ip-‘=(b+ 

6” = ‘/s Ip - v + c-’ (b - b~3 -t a,,p* + c'p)l sin 26 

H = ck, (b,, - b - a,,$ - c'p)-l cos-lih: 

h = -v + Iv - p -I- c-’ (b,, - b - ass@ - c’pfl cm* 6 

a13P 

(3.14) 

(3.15) 

ch) H (0.16) 

(3.17) 

(3.18) 

2E = [(b - 2cv) sin’ 6 + (b,, - a,& - 2cp - 2c’p) X case +)I HP 

where alIt apzr ass+ a,,, %,, bss, 4 c, cl, 
real parameters and 

V, p, k,, 6 (b > 2cv, bss > a,& -I- 2 (c +c') p) are independent 
b,,= b + a,,$ -I- c’p if k, = 0. 

When the relations (3.14)-(3.18) all hold, Eqs. (1.2) admit of the following solutions: 

R, = H sin +Y sin (9-t +- a), P, = H (h sin 6 + 
6” cos 6) sin (cp’t + a) 

(3.19) 

R,=Hsin6cos(cp’t+a), P,=*H(hsin@+ 
6” co9 6) cos (cp’t + a) 

R, = H cos 6, P, = H (h cos 4 - 6” sin a) - k, 
for which Ri, ui have the following expressions: 
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52, = *'sin 6 sin (cp'r + a), u1 = ($‘” sin* + $'W cos6) >( 
sin (cp't + a) 

Jzo =qp' sin 6 co9 (Cp'S + a), ~1~ = @'"sin fi + *'SO co9 I?) x 
co9 (cp't + a) 

83 = Ip'cos 8 + cp', UQ = $r'"cos6 - lp,'W cos6 

(3.20) 

Equations (3.14) show that in the PS motion the hydrostatic moment vector of the internal 
cyclic motions is parallel to the xs axis of the inherent screw motion of the body. Equations 
(3.15) impose the corresponding constraints on the form of the outer surface of the body and 
the distribution of its mass. Equations (3.16) determine the values of the kinematic 
characteristics of the PS motion. Equation (3.17) shows that when the angle 8 is varied and 
the remaining parameters are kept fixed, the zs axis describes a cylindroid. Expressions (3.18) 
give the values of the constants of the first three integrals of (1.3) for the PS motions of 
the body. 

4. Next we shall give a geometrical interpretation of the motion of the body described 
by (3.20). To do this we write (3.1), taking (3.16) into account, in the form 

&OPE=cp'&+$'e~W, U=Qe@E, p=Q”/lp’ (4.1) 

where 9, P, E is the modulus of the vector, a parameter and the Unit vector of the screw U, 
and p is a parameter of the screw PT. 

Squaring both sides of (4.1) and separating the principal and momentum parts, we find 

(4.2) 

Now, scalar mutliplying (4.1) by the screws E and r , and denoting by D=6+ OS” and 
e -D=# - 6 + 0 (W - 6’) the dual angles formed by the screw E with the screws E, and I', 
we obtain 

Qeop cos D = cp’ + g’e** COB 8, Qeop cos (e---D) = cp' cos e f 

$‘eOP 

Separating the principal and momentum parts, we obtain 

cos6=+'+ ~,'Cos6)W, 6"=[g~'*"sin6+ $'($'+ cp'c0s6)6~]W~ (4.3) 
cos(6-_)=('lp'+fp'cos6)P', 6"-_'=[-(p'g~sin6+cp'(cp'+~'cos6)~"]na 

The above formulas show that the dual angles formed by the unit vector E of the screw U 
with the screws E, and I', remain constant during the motion of the body. Therefore the axis 
of the screw U will describe, during the motion, single sheet hyperboloidswithinthe body and 
in the static space 

z12 + 2** - x*2tg26 = 8c*,, Ei2 + t**--Es*tg?(e-6)=1(6"- S')l (4.4) 

Here the fixed coordinate system Ok&& is chosen so that the Es axis is directed along 
the axis of the impulsive screw Q, and the points of intersection of the axis of dual angle 
8 with the axes of the screws Q and E, are taken as the origin of coordinates O,O"of the 
moving and fixed coordinate axes. 

The motion of the body in a fluid described by the solution (3.20) can be regarded as the 
result of rolling a moving hyperboloid over the fixed hyperboloid about the common generatrix 
with angular velocity a, and its slippage along this generatrixwithvelocity I;B. When cij -+ 

0, b,j 40, the problem of the motion of the body in a fluid becomes a problem of the motion 
of a gyrostat in a state of equilibrium, and the formulas (3.14)-(3.17) lead to the well-known 
results 

al, = %,, als = h, = 0, k, = k, = 0 
(C - A) 9. cos 6 + Ccp’ + k, = 0, q’” = 6” = 0, A = a,,-’ 

C = am-’ 

while (4.2) and (4-3) 

In this case the body moves in such a manner that the moving asymptotic cone rolls without 
slippage along the fixed asymptotic cone with angular velocity n, and the tops of the cones 

overlap. 

5. We shall study the stability of the motion (3.19) in the case when 

all= %a, Ills = ** = 0 (5.1) 

When conditions (5.1) hold, the doubled kinetic energy of the system is given, taking 
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(3.15) taken into account, by the expression 

2T = ~1 (4’ t- J’s’) + MV + b,, WI* + R,‘) + b,+* + (5.2) 
2% VW, + Jwd + Sswb 

et* = c + o,,v, Cl* = c -I- &jJp + c ‘9 a,= b-t w+ 

This is the form of kinetic energyofa body whose form and distribution of mass remain 
unchanged when the body rotates about the z1 axis by an angle n/2. A four-bladed ship propeller 
is an example of such a body. 

When conditions (5.1) hold, Eqs.(l.Pf admit of the first integral Pa= ccmst, Let us write 
expression (5.21 taking (3.15) and integrals (1.3) into account, in the form 

2T = 011 I(& + VW+ (Pr -I- vR*)'l + .r,P*B + 2( c' -I- o,,p) PI& -I- (5.3) 
@as - b) Rf - 2ck,R, + (I +- 2ch) HP = const 

Let us find the values of the variables Li= Pi+vRi (I= 2, 2) for which T is constant under 
the condition thatPI,be regarded as a paramster. From (5.3) we obtain 

ilT 
~=PiiLi=O(ir1,2), 

1 
~=(c’+u~~PI+(b~~-b)R*-~~=O 

We have for the solution (3 .lQ) 

LI = PI + vR1 = 0, L, = Pa + vR, = 0, P, + P& = 0 

Substituting into (5.4) P,= -pR, we obtain from these equations 

L, = Pz 4 vRx = 0, La = Pr + vR. = 0, R. = cks (b,, - b - B,# - e’p)-l (W 

The above expressions for L,,L,,R, agree with the corresponding expressions obtained 
from (3.19). This implies that the integral T=cond has a stationary value for the solution 
(3.191, provided that it is regarded as a function of the variables Lx, L,,R,, with P, regarded 
as a parameter. 

The demand that the second variation be positive definite 

8'1' - 411 1(&Y-t- (&)*I + (ib,, - b)(W)' 

leads to the inequality b,,>b which, by virtue of the Routh theorem, represents the suffi- 
cientconditionof stability of the PS motions (3.19) relative to the quantities Lx, L,, pa, RI, 

for which relations (5,l) hold. 
We note that in the case of a balanced gyrostat e+j== bi,= O&i= i, 2,3), therefore, taking 

into account (3.15) we have b= -a &<O and conditions b,ll>b holds. 
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